电子学报 ›› 2020, Vol. 48 ›› Issue (11): 2220-2225.DOI: 10.3969/j.issn.0372-2112.2020.11.018

• 学术论文 • 上一篇    下一篇

偏差补偿符号子带自适应滤波器

吉利鹏, 倪锦根   

  1. 苏州大学电子信息学院, 江苏苏州 215006
  • 收稿日期:2020-02-03 修回日期:2020-05-15 出版日期:2020-11-25 发布日期:2020-11-25
  • 通讯作者: 倪锦根
  • 作者简介:吉利鹏 男,1995年7月出生,江苏省泰州市人.苏州大学电子信息学院硕士研究生,主要研究方向为自适应信号处理.E-mail:lpji@stu.suda.edu.cn
  • 基金资助:
    国家自然科学基金(No.61471251);江苏省自然科学基金(No.BK20191419)

Bias-Compensated Sign Subband Adaptive Filter

JI Li-peng, NI Jin-gen   

  1. School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2020-02-03 Revised:2020-05-15 Online:2020-11-25 Published:2020-11-25
  • Supported by:
     

摘要: 自适应滤波器在系统辨识、回声消除、信道均衡等领域获得了广泛应用.符号子带自适应滤波器(Sign Subband Adaptive Filter,SSAF)具有较强的抗脉冲干扰能力,但当输入信号受到噪声干扰时,其对未知系统系数向量的估计会产生偏差.为了解决上述问题,本文基于无偏估计准则,提出了一种偏差补偿符号子带自适应滤波器(Bias-Compensated Sign Subband Adaptive Filter,BC-SSAF).为了解决定步长自适应滤波器需要在收敛速度和稳态失调之间进行折中的问题,本文采用随机梯度法来更新正则化参数,提出了变正则化参数偏差补偿符号子带自适应滤波器(Variable Regularization Bias-Compensated Sign Subband Adaptive Filter,VR-BC-SSAF).仿真结果验证了BC-SSAF和VR-BC-SSAF性能的优越性.

 

关键词: 子带自适应滤波, 脉冲噪声, 偏差补偿, 变正则化

Abstract: Adaptive filters have been widely used in system identification,echo cancellation and channel equalization.The sign subband adaptive filter (SSAF) is robust against impulsive noise.However,when the input is corrupted by noise,using the SSAF to estimate the coefficients of the unknown system will result in estimation bias.To address this problem,this paper proposes a bias-compensated SSAF (BC-SSAF) based on an unbiased-estimation criterion.To overcome the problem of tradeoff between convergence rate and steady-state misalignment existing in fixed step-size adaptive filters,this paper uses the method of stochastic gradient to update regularization parameter and thus presents a variable regularization BC-SSAF (VR-BC-SSAF).Simulation results verify the superiority of the BC-SSAF and VR-BC-SSAF.

Key words: subband adaptive filtering, impulsive noise, bias compensation, variable regularization

中图分类号: