利用EM算法估计隐含观测量的回馈神经网络学习新方法

戴宪华

电子学报 ›› 2000, Vol. 28 ›› Issue (10) : 133-137.

PDF(278 KB)
PDF(278 KB)
电子学报 ›› 2000, Vol. 28 ›› Issue (10) : 133-137.
论文

利用EM算法估计隐含观测量的回馈神经网络学习新方法

  • 戴宪华
作者信息 +

A New Method for Training RNN via Hidden Representation Estimated by EM Algorithm

  • DAI Xian-hua
Author information +
文章历史 +

摘要

研究回馈神经网络(RNN)参数估计的新方法.利用隐含观测量,将复杂RNN的训练分解为线性输出层和多个单隐元的参数估计.基于每个隐元激励函数的多点线性近似,RNN可利用统计混合专家网络模型(ME)描述,从而将RNN的参数估计转化为包含隐含观测量的线性系统的最大似然估计问题,最后利用期望最大化(EM)算法获得RNN的隐含观测量及其参数估计.

Abstract

A new method for training recurrent neural network (RNN) has been proposed.By introducing the hidden representation or hidden variables into RNN,training the complicated RNN is decomposed into training a set of single neurons and a linear output layer.Based on linear approximation of RNN hidden units,RNN is remodeled with a "mixture of experts"(ME) model.Morever,training RNN is also changed into a maximum likelihood estimation of the linear systems with hidden variables.Finally,training RNN is fulfilled with the expectation-maximization (EM) algorithm.

关键词

回馈神经网络 / EM算法 / 隐含观测量

Key words

recurrent neural networks / EM algorithm / hidden variables

引用本文

导出引用
戴宪华. 利用EM算法估计隐含观测量的回馈神经网络学习新方法[J]. 电子学报, 2000, 28(10): 133-137.
DAI Xian-hua. A New Method for Training RNN via Hidden Representation Estimated by EM Algorithm[J]. Acta Electronica Sinica, 2000, 28(10): 133-137.
中图分类号: TP183   

基金

国家自然科学基金 (No.69872021); 广东省自然科学基金 (No.980438)
PDF(278 KB)

2326

Accesses

0

Citation

Detail

国家自然科学基金(No.69872021);广东省自然科学基金(No.980438)
段落导航
相关文章

/