电子学报 ›› 2001, Vol. 29 ›› Issue (4): 566-568.

• 论文 • 上一篇    下一篇

基于小波分解的某些非平稳时间序列预测方法

徐 科1, 徐金梧1, 班晓娟2   

  1. 1. 北京科技大学机械工程学院,北京 100083;2. 北京科技大学计算机系,北京 100083
  • 收稿日期:1999-12-21 修回日期:2000-06-05 出版日期:2001-04-25 发布日期:2001-04-25

Forecasting of Some Non-Stationary Time Series Based on Wavelet Decomposition

XU Ke1, XU Jin-wu1, BAN Xiao-juan2   

  1. 1. School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China;2. Dept of Computer Science & Technology,University of Science and Technology Beijing,Beijing 100083,China
  • Received:1999-12-21 Revised:2000-06-05 Online:2001-04-25 Published:2001-04-25

摘要: 提出一种时间序列预测方法,称为小波预测方法.通过小波分解可以将某些非平稳时间序列分解成多层近似意义上的平稳时间序列,然后采用自回归模型对分解后的时间序列进行预测,从而得到原始时间序列的预测值.对年平均太阳黑子数的预测结果表明,该方法比传统的时间序列预测方法和神经网络预测方法的预测精度高,可以很好地应用于某些非平稳时间序列的预测中.

关键词: 小波分析, 时间序列, 预测

Abstract: A forecasting method of time series called wavelet-domain predictor is proposed.Some non-stationary time series can be decomposed into several approximate stationary time series with wavelet decomposition.Decomposed time series are forecasted with auto-regression model,to obtain forecasting results of the original time series.Experiments with sunspot activity data show that the method is better than traditional forecasting approaches and neural network approaches,and can be applied to forecasting of some non-stationary time series effectively.

Key words: wavelet analysis, time series, forecasting

中图分类号: