电磁矢量传感器阵列相干和独立信号DOA估计

陈广东, 黄海行, 陈智

电子学报 ›› 2017, Vol. 45 ›› Issue (9) : 2296-2301.

PDF(5387 KB)
PDF(5387 KB)
电子学报 ›› 2017, Vol. 45 ›› Issue (9) : 2296-2301. DOI: 10.3969/j.issn.0372-2112.2017.09.034
科研通信

电磁矢量传感器阵列相干和独立信号DOA估计

  • 陈广东, 黄海行, 陈智
作者信息 +

DOA Estimation with Arrays of Electromagnetic Vector Sensors Under the Coexistence of Both Uncorrelated and Coherent Signals

  • CHEN Guang-dong, HUANG Hai-xing, CHEN Zhi
Author information +
文章历史 +

摘要

本文研究利用矢量传感器阵列接收数据的高阶累计量区分独立和相干信号,进行参数估计.从矢量阵列信号高阶累积量任意数量的切片中估计多信号中的一个独立信号参数时,利用隔离向量选通目标信号,对其他信号进行隔离,提高了独立信号参数估计性能,信号源中可包含相干信号.独立信号的电场导向矢量与电磁导向矢量因垂直而内积为零,利用此关系可得到已虑除了所有独立信号的多个四阶累积量切片矩阵,相干信号存在于矩阵的信号子空间中.滤除独立信号估计相干信号参数,可提高相干信号参数估计性能.因可抑制任意方向,任意数量的独立干扰,即能抗饱和干扰,算法可作为电子对抗工具.仿真试验表明该方法有效.

Abstract

We study DOA(Direction Of Arrival) estimation of the independent and coherent signals with arrays of electromagnetic vector sensors.With a gating vector to select the target signal and isolate other signals,an independent signal parameter in multi-signals is estimated from multi-cumulant matrices,while other signals are suppressed.The inner product of electric and magnetic steering vectors is zero for perpendicular,which is used to filter all the independent signals in the fourth-order cumulants of the observed data.So only the coherent signals exist in the signal subspace of the cumulant matrices.The performance of multi-signals parameters estimation is improved by the separation of independent and coherent signals.Due to the suppression of any direction and number of independent interference,this algorithm has the ability to resist saturation interference and can be used as a tool for electronic warfare.The simulation experiment shows the method is stable and effective.

关键词

电磁矢量传感器 / 极化状态 / 波达方向 / 相干信号

Key words

electromagnetic vector sensor / state of polarization / DOA(Direction Of Arrival) / coherent signal

引用本文

导出引用
陈广东, 黄海行, 陈智. 电磁矢量传感器阵列相干和独立信号DOA估计[J]. 电子学报, 2017, 45(9): 2296-2301. https://doi.org/10.3969/j.issn.0372-2112.2017.09.034
CHEN Guang-dong, HUANG Hai-xing, CHEN Zhi. DOA Estimation with Arrays of Electromagnetic Vector Sensors Under the Coexistence of Both Uncorrelated and Coherent Signals[J]. Acta Electronica Sinica, 2017, 45(9): 2296-2301. https://doi.org/10.3969/j.issn.0372-2112.2017.09.034
中图分类号: TN911.7   

参考文献

[1] Tan KC,Ho KC,Nehorai A.Uniqueness study of measurements obtainable with arrays of electromagnetic vector sensors[J].IEEE Transactions on Signal Processing,1996,SP-44(4):1036-1039.
[2] 庄钊文,徐振海,肖顺平.极化敏感阵列信号处理[M].北京:国防工业出版社,2006.2-277.
[3] 徐友根,刘志文.基于累积量的极化敏感阵列DOA和极化参数的同时估计[J].电子学报,2004,32(12):1962-1966. Xu Yougen,Liu Zhiwen Wen.Cumulant-based two-dimensional DOA and polarization estimation with a polarization sensitive array comprising a spatially stretched tripole[J].Acta Electronica Sinica,2004,32(12):1962-1966.(in Chinese)
[4] Wong K T,Zoltowski M D.Self-initiating MUSIC direction finding and polarization estimation in spatio-polarizational beam-space[J].IEEE Transactions on Antenna Propagation,2000,48(8):1235-1245.
[5] 李会勇,张远芳,谢菊兰.极化敏感线阵的模值约束降维Root-MUSIC算法[J].信号处理,2016,32(2):173-178. Li H Y,Zhang Y F,Xie J L.Areduced-dimensional root-MUSIC algorithm with the modulus constraint based on polarization sensitive linear array[J].Journal of Signal Processing,2016,32(2):173-178.(in Chinese)
[6] 徐友根,刘志文,电磁矢量传感器阵列相干信号源波达方向和极化参数的同时估计:空间平滑方法[J].通信学报,2004,25(5):28-38. Xu Yougen,Liu Zhiwen Wen.Simultaneous estimation of 2D DOA and polarization of multiple coherent sources using an electromagnetic vector sensor array[J].Journal of China Institute of Communications,2004,25(5):28-38.(in Chinese)
[7] He J,Jiang S,Wang J,et al. Polarization difference smoothing for direction finding of coherent signals[J].IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):469-480.
[8] 张树银,郭英,齐子森,苏令华.锥面共形阵列相干源DOA和极化参数的联合估计算法[J]宇航学报,2012,33(7):956-963. Zhang S Y,Guo Y,Qi Z S,Su L H.DOA and polarization estimation algorithm for coherent signals with conical conformal array[J].Journal of Astronautics,2012,33(7):956-963.(in Chinese)
[9] Pascal C,Laurent A,Anne F,Pierre C.On the virtual array concept for higher order array processing[J].IEEE Transactions on Signal Processing,2005,53(4):1254-1271.
[10] Pascal C,Anne F,Laurent A.High-resolution direction.finding from higher order statistics:The 2q-MUSIC algorithm[J].IEEE Transactions on Signal Processing,2006,54(8):2986-2997.
[11] Wingkin Ma,Tsunghan Hsieh,Chongyung Chi.DOA estimation of quasistationary signals with less sensors than sources and unknown spatial noise covariance:A Khatri-Rao subspace approach[J].IEEE Transactions on Signal Processing,2010,58(4):2168-2180.
[12] Pascal C,Anne F,Laurent A,Gwenael B.Higher order direction finding from arrays with diversely polarized antennas:the PD-2q-MUSIC algorithms[J].IEEE Transactions on Signal Processing,2007,55(3):5337-5350.
[13] Xu Yougen,Liu Zhiwen Wen,Kainam Thomas,Cao Jinliang.Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors[J].IEEE Transactions on Aerospace and Electronic Systems,2008,44(4):1291-1308.
[14] Yan F,Jin M,Liu S.Real-valued MUSIC for efficient direction estimation with arbitrary array geometries[J].IEEE Transactions on Signal Processing,2014,62(6):1548-1560.
[15] 刘帅,王军,金铭,乔晓林.共形阵列MUSIC算法分辨力性能分析[J].哈尔滨工业大学学报,2016,48(05):51-56. Liu S,Wang J,Jin M,Qiao X L.Resolution performance analysis of MUSIC for conformal array.Journal of Harbin Institute of Technology,2016,48(5):51-56.(in Chinese)
[16] Liu F L,Wang J K,Sun C Y,Du R Y.Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals[J].IEEE Transactions on Antennas and Propagation,2012,60(4):2052-2062.
[17] Nehorai A,Paldi E.Vector-sensor array processing for electromagnetic source localization[J].IEEE Transactions on Signal Processing,1994,42(2):376-398.
[18] Gonen E,Mendel JM.Applications of cumulants to array processing.Ⅲ.Blind beamforming for coherent signals[J].IEEE Transactions on Signal Processing,1997,45(9):2252-2264.
[19] Zeng Wenjun,Li Xilin,Zhang Xianda.Direction-of-arrival estimation based on the joint diagonlization structure of multiple fourth-order cumulant matrices[J].IEEE Signal Processing Letters,2009,16(3):164-167.
[20] Lie Suwandi,LA Rahim;CY Huat.Fourth-order and weighted mixed order direction-of-arrival estimators[J].IEEE Signal Processing Letters,2006,13(11):691-694.
PDF(5387 KB)

Accesses

Citation

Detail

段落导航
相关文章

/