中图分类号:
TP391
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[A].Advances in Neural Information Processing Systems[C].Lake Tahoe:NIPS Foundation,2012.1097-1105.
[2] DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Florida:IEEE Press,2009.248-255.
[3] 柯圣财,赵永威,李弼程,等.基于卷积神经网络和监督核哈希的图像检索方法[J].电子学报,2017,45(1):157-163. KE Sheng-cai,ZHAO Yong-wei,LI Bi-cheng,et al.Image retrieval based on convolutional neural network and kernel-based supervised hashing[J].Acta Electronica Sinica,2017,45(1):157-163.(in Chinese)
[4] 王泽宇,吴艳霞,张国印,等.基于空间结构化推理深度融合网络的RGB-D场景解析[J].电子学报,2018,46(5):1253-1258. WANG Ze-yu,WU Yan-xia,ZHANG Guo-yin,et al.RGB-D scene parsing based on spatial structured inference deep fusion networks[J].Acta Electronica Sinica,2018,46(5):1253-1258.(in Chinese)
[5] 李康,李亚敏,胡学敏,等.基于卷积神经网络的鲁棒高精度目标跟踪算法[J].电子学报,2018,46(9):2087-2093. LI Kang,LI Ya-min,HU Xue-min,et al.Robust and accurate object tracking algorithm based on convolutional neural network[J].Acta Electronica Sinica,2018,46(9):2087-2093.(in Chinese)
[6] 邹承明,罗莹,徐晓龙.基于多特征组合的细粒度图像分类方法[J].计算机应用,2018,38(7):1853-1856,1861. ZOU Cheng-ming,LUO Ying,XU Xiao-long.Fine-grained image classification method based on multi-feature combination[J].Journal of Computer Applications,2018,38(7):1853-1856,1861.(in Chinese)
[7] LIN T Y,ROYCHOWDHURY A,MAJI S.Bilinear CNN models for fine-grained visual recognition[A].Proceedings of IEEE International Conference on Computer Vision[C].Santiago:IEEE Press,2015.1449-1457.
[8] LI P,XIE J,WANG Q,et al.Is second-order information helpful for large-scale visual recognition[A].Proceedings of IEEE International Conference on Computer Vision[C].Venice:IEEE Press,2017.2070-2078.
[9] LIN T Y,MAJI S.Improved bilinear pooling with CNNs[A].British Machine Vision Conference[C].London:British Machine Vision Association,2017.1-12.
[10] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[A].International Conference on Machine Learning[C].Lille:ACM,2015.448-456.
[11] MAJI S,RAHTU E,KANNALA J,et al.Fine-Grained Visual Classification of Aircraft[OL].https://arxiv.org/abs/1306.5151,2013.
[12] WAH C,BRANSON S,WELINDER P,et al.The Caltech-Ucsd Birds-200-2011 Dataset[R].Technical report,Caltech.2011.
[13] KRAUSE J,STARK M,DENG J,et al.3D object representations for fine-grained categorization[A].Proceedings of IEEE International Conference on Computer Vision Workshops[C].Portland:IEEE Press,2013.554-561.
[14] GAO Y,BEIJBOM O,ZHANG N,et al.Compact bilinear pooling[A].Proceedings of IEEE Conference on Computer Vision and attern Recognition[C].Las Vegas:IEEE Press,2016.317-326
[15] LI Y,WANG N,LIU J,et al.Factorized bilinear models for image recognition[A].Proceedings of IEEE International Conference on Computer Vision[C].Venice:IEEE Press,2017.2098-2106.
[16] CUI Y,ZHOU F,WANG J,et al.Kernel pooling for convolutional neural networks[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu:IEEE Press,2017.3049-3058.
[17] WANG Q,LI P,ZHANG L.G2DeNet:Global Gaussian distribution embedding network and its application to visual recognition[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu:IEEE 2017.2730-2739.
[18] IONESCU C,VANTZOS O,SMINCHISESCU C.Training deep networks with structured layers by matrix backpropagation[OL].https://arxiv.org/abs/1509.07838,2015.
[19] LIN H T,LIN C J.A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-Type Methods[R].Technical Report,Nat'l Taiwan Univ,2003.
[20] VEDALDI A,LENC K.Matconvnet:convolutional neural networks for matlab[A].ACM International Conference on Multimedia[C].Brisbane:ACM,2015.689-692.
[21] CHATFIELD K,SIMONYAN K,VEDALDI A,et al.Return of the devil in the details:Delving deep into convolutional nets[A].British Machine Vision Conference[C].Nottingham:British Machine Vision Association,2014.1-12.
[22] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[A].International Conference on Learning Representations[C].San Diego,2015.1-14.
[23] NAIR V,HINTON G E.Rectified linear units improve restricted boltzmann machines[A].International Conference on Machine Learning[C].Haifa:ACM,2010.807-814.
[24] GOU M,XIONG F,CAMPS O,et al.MoNet:Moments embedding network[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Salt Lake City:IEEE Press,2018.3175-3183.
[25] KONG S,FOWLKES C.Low-rank bilinear pooling for fine-grained classification[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu:IEEE Press,2017.7025-7034.
[26] FU J,ZHENG H,MEI T.Look closer to see better:Recurrent attention convolutional neural network for fine-grained image recognition[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu:IEEE Press,2017.4476-4484.
[27] MOGHIMI M,BELONGIE S J,SABERIAN M J,et al.Boosted convolutional neural networks[A].British Machine Vision Conference[C].York:British Machine Vision Association,2016.1-13.
[28] JADERBERG M,SIMONYAN K,ZISSERMAN A,et al.Spatial transformer networks[A].Advances in neural information processing systems[C].Montreal:MIT Press,2015.2017-2025
[29] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Las Vegas:IEEE Press,2016.770-778.
[30] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Boston:IEEE Press,2015.1-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61471082)
{{custom_fund}}