[1] KULCHANDANI J S,DANGARWALA K J.Moving object detection:Review of recent research trends[A].Proceedings of International Conference on Pervasive Computing[C].Pune:IEEE Press,2015:1-5.
[2] LUO Yuhan,ZHANG Hong.Sparse learning for robust background subtraction of video sequences[A].Proceedings of Intelligent Computing Theories and Methodologies[C].Fuzhou,China:Springer International Publishing,2015:400-411.
[3] CUI X,HUANG J,ZHANG S,et al.Background subtraction using low rank and group sparsity constraints[A].Proceedings of IEEE Conference on Computer Vision[C].Florence,Italy:IEEE Computer Society Press,2012:612-625.
[4] BO Xin-yuan,TIAN Yizhou,WANG Wen-gao.Background subtraction via generalized fused lasso foreground modeling[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Boston,MA:IEEE Computer Socity Press,2015:4676-4684.
[5] 高仕博,程咏梅,肖利平,等.面向目标检测的稀疏表示方法研究进展[J].电子学报,2015,43(2):320-332. GAO Shi-bo,CHENG Yong-mei,XIAO Li-ping,et al.Recent advances of sparse representation for object detection[J].Acta Electronica Sinica,2015,43(2):320-332.(in Chinese)
[6] 蒋建国,金玉龙,齐美彬,等.基于稀疏表达残差的自然场景运动目标检测[J].电子学报,2015,43(9):1738-1744. JIANG Jian-guo,JIN Yu-long,QI Mei-bin,et al.Moving target detection in natural scene based on sparse representation of residuals[J].Acta Electronica Sinica,2015,43(9):1738-1744.(in Chinese)
[7] WRIGHT J,YANG A Y,GANESH A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
[8] HUANG Jun-zhou,HUANG Xiao-lei,METAXAS Dimitris.Learning with dynamic group sparsity[A].Proceedings of IEEE International Conference on Computer Vision[C].Los Alamitos:IEEE Computer Society Press,2009:64-71.
[9] ZHAO Cong,WANG Xiao-gang,CHAM Wai-Kuen.Background subtraction via robust dictionary learning[J].EURASIP Journal on Image and Video Processing,2011,2011(2):1-12.
[10] LU Cewu,SHI Jian-ping,JIA Jia-ya.Online robust dictionary learning[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Portland,OR:IEEE Press,2013:415-422.
[11] CANDES E J,LI X D,MA Y,et al.Robust principal component analysis?[J].Journal of the ACM,2011,58(3):1-37.
[12] ZHOU Z H,Li X D,WRIGHT J,et al.Stable principal component pursuit[A].Proceedings of the 2010 IEEE International Symposium on Information Theory[C].Austin,TX:IEEE Press,2010:1518-1522.
[13] ZHOU Xiao-wei,YANG Can,YU Wei-chuan.Moving object detection by detecting contiguous outliers in the low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(3):597-610.
[14] SCHICK A,BAUML M,STIEFELHAGEN R.Improving foreground segmentations with probabilistic superpixel markov random fields[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recongnition Workshops[C].Providence,RI:IEEE Press,2012:27-31.
[15] LI S Z.Markov Random Field Modeling in Image Analysis[M].London:Springer,2009.
[16] 平岡和幸,堀玄著,陈筱烟译.程序员的数学2概率统计[M].北京:人民邮电出版社,2015.
[17] ELAD Michael.Sparse and Redundant Representations From Theory to Application in Signal and Image Processing[M].NewYork:Springer,2010.
[18] CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,2001,20(1):33-61.
[19] YANG J,WRIGHT J,HUANG T,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.
[20] 何志勇,孙立宁,陈立国.Otsu准则下分割阈值的快速计算[J].电子学报,2013,41(2):267-272. HE Zhi-yong,SU Li-ning,CHEN Li-guo.Fast computation of threahold based on otsu criterion[J].Acta Electronica Sinica,2013,41(2):267-272.(in Chinese). |