[1] LOIZOU P C.Speech Enhancement:Theory and Practice[M].UK:CRC Press,2013.
[2] 孟宪波,鲍长春.基于最小控制GARCH模型的噪声估计算法[J].电子学报,2016,44(3):747-752. MENG Xian-bo,BAO Chang-chun.Noise estimate algorithm based on minima controlled GARCH model[J].Acta Electronica Sinica,2016,44(3):747-752.(in Chinese)
[3] 何玉文,鲍长春,夏丙寅,等.基于AR-HMM在线能量调整的语音增强方法[J].电子学报,2014,42(10):1991-1997. HE Yu-wen,BAO Chang-chun,XIA Bing-yin,et al.Online energy adjustment using AR-HMM for speech enhancement[J].Acta Electronica Sinica,2014,42(10):1991-1997.(in Chinese)
[4] MOHAMMADIHA N,SMARAGDIS P,LEIJON A.Supervised and unsupervised speech enhancement using nonnegative matrix factorization[J].IEEE Transactions on Audio,Speech,and Language Processing,2013,21(10):2140-2151.
[5] 刘文举,聂帅,梁山,等.基于深度学习语音分离技术的研究现状与进展[J].自动化学报,2016,42(6):819-833. LIU Wen-Ju,NIE Shuai,LIANG Shan,et al.Deep learning based speech separation technology and its developments[J].Acta Automatica Sinica,2016,42(6):819-833.(in Chinese)
[6] XU Y,DU J,DAI L R,et al.An experimental study on speech enhancement based on deep neural networks[J].IEEE Signal Processing Letters,2014,21(1):65-68.
[7] XU Y,DU J,DAI L R,et al.A regression approach to speech enhancement based on deep neural networks[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2015,23(1):7-19.
[8] XU Y,DU J,HUANG Z,et al.Multi-objective learning and mask-based post-processing for deep neural network based speech enhancement[A].Proceedings of Sixteenth Annual Conference of the International Speech Communication Association[C].Dresden:ISCA,2015.1508-1512.
[9] WANG Y,CHEN J,WANG D L.Deep Neural Network Based Supervised Speech Segregation Generalizes to Novel Noises Through Large-Scale Training[R].Ohio State University Columbus,2015.
[10] CHEN J,WANG Y,YOHO S E,et al.Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises[J].The Journal of the Acoustical Society of America,2016,139(5):2604-2612.
[11] CHEN J,WANG Y,WANG D L.Noise perturbation for supervised speech separation[J].Speech Communication,2016,78:1-10.
[12] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[A].Proceedings of Advances in Neural Information Processing Systems[C].US:NIPS,2014.2672-2680.
[13] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[A].International Conference on Learning Representations[C].US:ICLR,arXiv:1511.06434v2.
[14] HU G.100 Nonspeech Environmental Sounds,2004[OL].http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html,2004.
[15] GAROFOLO J S,LAMEL L F,FISHER W M,et al.TIMIT Acoustic-Phonetic Continuous Speech Corpus[CD].Philadelphia:Linguistic Data Consortium,1993.
[16] VARGA A,STEENEKEN H J M.Assessment for automatic speech recognition:Ⅱ.NOISEX-92:A database and an experiment to study the effect of additive noise on speech recognition systems[J].Speech Communication,1993,12(3):247-251.
[17] YU D,EVERSOLE A,SELTZER M,et al.An Introduction to Computational Networks and the Computational Network Toolkit[R].Tech Rep MSR,Microsoft Research,2014.
[18] RIX A W,BEERENDS J G,HOLLIER M P,et al.Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs[A].Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing[C].US:IEEE,2001.749-752.
[19] TAAL C H,HENDRIKS R C,HEUSDENS R,et al.An algorithm for intelligibility prediction of time-frequency weighted noisy speech[J].IEEE Transactions on Audio,Speech,and Language Processing,2011,19(7):2125-2136. |