[1] PATEL N K,PATNAIK C,DUTTA S,et al.Study of crop growth parameters using airborne imaging spectrometer data[J].International Journal of Remote Sensing,2001,22(12):2401-2411.
[2] LI J,BIOUCAS-DIAS J M,Plaza A.Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields[J].IEEE Transactions on Geoscience & Remote Sensing,2012,50(3):809-823.
[3] HUANG C,DAVIS L S,TOWNSHEND J R G.An assessment of support vector machines for land cover classification[J].International Journal of Remote Sensing,2002,23(4):725-749.
[4] JIA X,Richards J.Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification[J].IEEE Transactions on Geoscience & Remote Sensing,1999,37(1):538-542.
[5] SUMARSONO A,DU Q.Low-rank subspace representation for supervised and unsupervised classification of hyperspectral imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2016,9(9):4188-4195.
[6] CAMPS-VALLS G,BRUZZONE L.Kernel-based methods for hyperspectral image classification[J].IEEE Transactions on Geoscience & Remote Sensing,2005,43(6):1351-1362.
[7] CHEN Y,NASRABADI N M,TRAN T D.Hyperspectral image classification via kernel sparse representation[J].IEEE Transactions on Geoscience & Remote Sensing,2013,51(1):217-231.
[8] MELGANI F,BRUZZONE L.Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience & Remote Sensing,2004,42(8):1778-1790.
[9] 孙乐,吴泽彬,冯灿,等.一种新的两分类器融合的空谱联合高光谱分类方法[J].电子学报,2015,43(11):2210-2217. SUN L,WU Z B,FENG C,et al.A novel two-classifier fusion method for spectral-spatial hyperspectral classification[J].Acta Electronica Sinica,2015,43(11):2210-2217.(in Chinese)
[10] MOSER G,SERPICO S B.Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[J].IEEE Transactions on Geoscience & Remote Sensing,2013,51(5):2734-2752.
[11] CHEN Y,NASRABADI N M,Tran T D.Hyperspectral image classification using dictionary-based sparse representation[J].IEEE Transactions on Geoscience & Remote Sensing,2011,49(10):3973-3985.
[12] SUN L,WU Z,LIU J,XIAO L,WEI Z.Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields[J].IEEE Transactions on Geoscience & Remote Sensing,2015,53(3):1490-1503.
[13] BENEDIKTSSON J A,PALMASON J A,SVEINSSON J R.Classification of hyperspectral data from urban areas based on extended morphological profiles[J].IEEE Transactions on Geoscience & Remote Sensing,2005,43(3):480-491.
[14] CAMPS-VALLS G,GOMEZ-CHOVA L,MUNOZ-MARI J,et al.Composite kernels for hyperspectral image classification[J].IEEE Geoscience & Remote Sensing Letters,2006,3(1):93-97.
[15] LIU J,WU Z,WEI Z,XIAO L,SUN L.Spatial-spectral kernel sparse representation for hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2013,6(6):2462-2471.
[16] DUAN W,LI S,FANG L.Superpixel-based composite kernel for hyperspectral image classification[A].IEEE International Conference on Geoscience and Remote Sensing Symposium[C].IEEE,2015.1698-1701.
[17] SUN Z,WANG C,WANG H,et al.Learn multiple-kernel SVMs for domain adaptation in hyperspectral data[J].IEEE Geoscience & Remote Sensing Letters,2013,10(5):1224-1228.
[18] FANG L,LI S,DUAN W,et al.Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels[J].IEEE Transactions on Geoscience & Remote Sensing,2015,53(12):6663-6674.
[19] COVER T M.Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition[J].IEEE Transactions on Electronic Computers,1965,EC-14(3):326-334.
[20] JOLLIFFE,Ian.Principal Component Analysis[M].Springer-Verlag,1986.
[21] LIU M Y,TUZEL O,RAMALINGAM S,et al.Entropy rate superpixel segmentation[A].IEEE Computer Vision and Pattern Recognition[C].IEEE,2011.2097-2104.
[22] CHANG C C,LIN C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27. |