[1] Pan S J L,Kwok J T,Yang Q.Transfer learning via dimensionality reduction[A].Proceedings of the 23rd International Conference on Artificial Intelligence [C].California,USA,2008.677-682.
[2] Pan S J L,Ni X.Cross-domain sentiment classification via spectral feature alignment [A].Proceedings of the 19th International Conference on World Wide Web[C].New York:ACM,2010.751-760.
[3] Zhuang F Z,Luo P,Xiong H,Xiong Y H.Cross-domain learning from multiple sources:a concensus regularization perspective[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(12):1664-1678.
[4] Sun S.Multi-view Laplacian support vector machines[A].Lecture Notes in Computer Science[C].Germany:Springer,2011.209-222.
[5] Xu Z,Sun S.Multi-view transfer learning with Adaboost[A].Proceedings of the 23rd International Conference Tools with Artificial Intelligence[C].New York,2011.399-402.
[6] Ling X,Dai W,Xue G R,et al.Spectral domain-transfer learning[A].Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining[C].USA:ACM,2008.488-496.
[7] Gao J,Fan W,Sun Y,et al.Heterogeneous source consensus learning via decision propagation and negotiation[A].Proceedings of the 15rd International Conference on Knowledge Discovery and Data Mining[C].USA:ACM,2009.339-348.
[8] 蒋亦樟,邓赵红,王士同.ML型迁移学习模糊系统[J].自动化学报,2012,38(9):1393-1409. Jiang Yizhang,Deng Zhaohong,Wang Shitong.Mamdani-Larsen type transfer learning fuzzy system[J].Acta Automatica Sinica,2012,38(9):1393-1409.(in Chinese)
[9] 胡文军,王士同,邓赵红.适合大样本快速训练的最大夹角间隔核心集向量机[J].电子学报,39(5):1178-1184. Hu Wen-jun,WANG Shi-tong,DENG Zhao-hong.Maximum vector angular margin core vector machine suitable for fast training for large datasets[J].Acta Electronica Sinica,39(5):1178-1184.(in Chinese)
[10] Deng Z H,Fu-Lai Chung,Wang S T.FRSDE:fast reduced set density estimator using minimal enclosing ball approximation[J].Pattern Recognition,2008,(41):1363-1372.
[11] Tsang I,Kwok J,Cheung P.Core vector machines:fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6:363-392.
[12] Tax D M J,Duin R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20:1191-1199.
[13] Tax D M J,Duin R P W.Support vector data description[J].Machine Learning,2004,54:45-66.
[14] 邓乃杨,田英杰.数据挖掘的新方法—支持向量机[M].北京:科学出版杜,2004. Deng Nai-yang,Tian Ying-jie.New Method in Data Mining:Support Vector Machine[M].Beijing:Science Press,2004.(in Chinese).
[15] Tsang I,Kwok J,Cheung P.Core vector machines:fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6:363- 392.
[16] Tsang I,wok J.Generalized core vector machines[J].IEEE Trans on Neural Networks,2006,17(5):1126-1139.
[17] Suykens J A K,Lukas L,et al.Least squares support vector machine classifiers:a large scale algorithm[A].Proceedings of the European Conference on Circuit Theory and Design[C].Stresa,Italy,1999.839-842.
[18] Dai W,Yang Q,Xue G,et al.Boosting for transfer learning[A].Proceedings of the 24th International Conference on Machine Learning[C].New York:ACM,2007.193-200.
[19] Yao Y,Doretto G.Boosting for transfer learning with multiple sources[A].Proceedings of the 24th International Conference on Computer Vision and Pattern Recognition[C].New York:ACM,2010.1855-1862.
[20] Ablavsky V H,Becker C J.Transfer learning by sharing support vectors[OL].http://infoscience.epfl.ch/record/181360.
[21] Evgeniou T,Pontil M.Regularized multi-task learning[A].Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining[C].New York:ACM,2004.109-117.
[22] Dai W,Xue G,Yang Q,et al.Co-clustering based classification for out-of-domain documents[A].Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining[C].New York:ACM,2007:210-219.
[23] http://wang.ist.psu.edu/docs/related.shtml |