[1] Gould S,Fulton R,Koller D.Decomposing a scene into geometric and semantically consistent regions[A].Proceedings of the IEEE International Conference on Computer Vision[C].Kyoto,Japan:IEEE,2009.1-8.
[2] Gupta A,Efros A A,Hebert M.Blocks world revisited:image understanding using qualitative geometry and mechanics[A].Proceedings of the European Conference on Computer Vision[C].Crete,Greece:ACM,2010.482-496.
[3] Yu S X,Zhang H,Malik J.Inferring spatial layout from a single image via depth-ordered grouping[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2008.1-7.
[4] Lee D C,Hebert M,Kanade T.Geometric reasoning for single image structure recovery[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2009.2136-2143.
[5] 李亚峰.一种基于多字典学习的图像分割模糊方法[J].电子学报,2018,46(7):1700-1709. Li Ya-feng.An image segmentation fuzzy method based on multi-dictionary learning[J].Acta Electronica Sinica,2018,46(7):1700-1709.(in Chinese)
[6] Shelhamer E,Long J,Darrell T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(4):640-651.
[7] Hung W C,Tsai Y H,Liou Y T,et al.Adversarial learning for semi-supervised semantic segmentation[J].CORR,2018,57(8):7540-7551.
[8] Souly N,Spampinato C,Shah M.Semi supervised semantic segmentation using generative adversarial network[A].Proceedings of the IEEE International Conference on Computer Vision[C].New York,USA:IEEE,2017.5689-5697.
[9] Ghiasi G,Fowlkes C C.Laplacian Pyramid reconstruction and fefinement for semantic segmentation[A].Proceedings of the European Conference on Computer Vision[C].USA:IEEE,2016.519-534.
[10] Lin G,Shen C,Hengel A V D,et al.Efficient piecewise training of deep structured models for semantic segmentation[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2016.3194-3203.
[11] Liu Z,Li X,Luo P,et al.Semantic image segmentation via deep parsing network[A].Proceedings of the IEEE International Conference on Computer Vision[C].Santiago,Chile:IEEE,2015.1377-1385.
[12] Papandreou G,Chen L C,Murphy K P,et al.Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation[A].Proceedings of the IEEE International Conference on Computer Vision[C].Santiago,Chile:IEEE,2015.1742-1750.
[13] Peng C,Zhang X,Yu G,et al.Large kernel matters-improve semantic segmentation by global convolutional network[J].IEEE Conference on Computer Vision and Pattern Recognition,2017,189(1):1743-1751.
[14] Ning Q,Zhu J,Chen C.Very fast semantic image segmentation using hierarchical dilation and feature refining[J].Cognitive Computation,2017,10(2):1-11.
[15] Jiang Z,Yuan Y,Wang Q.Contour-aware network for semantic segmentation via adaptive depth[J].Neurocomputing,2018,284(1):27-35.
[16] Zhu H,Mng F,Cai J,et al.Beyond pixels:A comprehensive survey from bottom-up to semantic image segmentation and cosegmentation[J].Journal of Visual Communication & Image Representation,2015,34(2):12-27.
[17] Thoma M.A Survey of semantic segmentation[J].CORR,2016,65(41):1-15.
[18] Guo Y,Liu Y,Georgiou T,et al.A review of semantic segmentation using deep neural networks[J].International Journal of Multimedia Information Retrieval,2017,7(2):87-93.
[19] Garcia-garcia A,Orts-Escolano S,Oprea S,et al.A review on deep learning techniques applied to semantic segmentation[J].CORR,2017,75(9):41-65.
[20] Geng Q,Zhou Z,Cao X.Survey of recent progress in semantic image segmentation with CNNs[J].Science China(Information Sciences),2018,61(5):1101-1118.
[21] Shetty S.Application of convolutional neural network for image classification on pascal voc challenge 2012 dataset[J].CORR,2016,21(3):1-6.
[22] Carreira J,Sminchisescu C.CPMC:Automatic object segmentation using constrained parametric min-cuts[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2012,34(7):1312-1328.
[23] Carreira J,Rui C,Batista J,et al.Semantic segmentation with second-order pooling[J].European Conference on Computer Vision,2012,7578(1):430-443.
[24] Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semanticsegmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2014.580-587.
[25] Uijlings J R R,Van DE Sande K E A,Gevers T,et al.Selective search for object recognition[J].IJCV,2013,104(2):154-171.
[26] Hariharan B,Arbel EZ P,Girshick R,et al.Simultaneous detection and segmentation[A].Proceedings of the European Conference on Computer Vision[C].USA:IEEE,2014.297-312.
[27] Arbel EZ P,Pont-Tuset J,Barron J,et al.Multiscale combinatorial grouping[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2014.328-335.
[28] Ren S,Girshick R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[29] Caesar H,Uijlings J,Ferrari V.Region-based semantic segmentation with end-to-end training[A].Proceedings of the European Conference on Computer Vision[C].USA:IEEE,2016.381-397.
[30] Girshick R.Fast R-CNN[A].Proceedings of the IEEE International Conference on Computer Vision[C].Santiago,Chile:IEEE,2015.1-9.
[31] X J,Y G,Z F,et al.An end-to-end human segmentation by region proposed fully convolutional network[A].IEEE Access[C].USA:IEEE,2019.16395-16405.
[32] Noh H,Hong S,Han B.Learning deconvolution network for semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Santiago,Chile:IEEE,2015.1520-1528.
[33] Simonyan K,Zisserman A.Very deep convolutional networks for large-scale image recognition[A].International Conference on Learing Representation[C].USA:IEEE,2014.1-14
[34] 李宝奇,贺昱曜,何灵蛟,等.基于全卷积神经网络的非对称并行语义分割模型[J].电子学报,2019,47(5):1058-1064. Li Bao-qi,HE Yu-yao,HE ling-jiao,et al.Asymmetric parallel semantic segmentation model based on full convolutional neural network[J].Acta Electronica Sinica,2019,47(5):1058-1064.(in Chinese)
[35] Badrinarayanan V,Kendall A,Cipolla R.SegNet:A deep convolutional encoder-decoder architecture for scene segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(1):2481-2495.
[36] Ronneberger O,Fischer P,Brox T.U-Net:Convolutional networks for biomedical image segmentation[J].Medical Image Computing and Computer-Assisted Intervention,2015,56(9):234-241.
[37] MIilletar F,Navab N,Ahmadi S A.V-Net:Fully convolutional neural networks for volumetric medical image segmentation[A].Proceedings of the International Conference on 3d Vision[C].USA:IEEE,2016.565-571.
[38] Chen L C,Papandreou G,Kokkinos I,et al.Semantic image segmentation with deep convolutional nets and fully connected crfs[J].Computer Science,2014,4):357-361.
[39] Chen L C,Papandreou G,Kokkinos I,et al.DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,40(4):834-848.
[40] Chen L C,Zhu Y,Papandreou G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[A].Proceedings of the European Conference on Computer Vision[C].Germany:IEEE,2018.833-851.
[41] Kr H H P,Koltun V.Efficient inference in fully connected crfs with Gaussian edge potentials[J].CORR,2012,34(2):1-9.
[42] Chandra S,Kokkinos I.Fast,exact and multi-scale inference for semantic image segmentation with deep Gaussian crfs[A].Proceedings of the European Conference on Computer Vision[C].USA:IEEE,2016.402-418.
[43] Pohlen T,Hermans A,Mathias M,et al.Full-fesolution residual networks for semantic segmentation in street scenes[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2016.3309-3318.
[44] Pinheiro P O,Collobert R.From image-level to pixel-level labeling with convolutional networks[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2015.1713-1721.
[45] Lin G,Milan A,Shen C,et al.RefineNet:multi-path refinement networks for high-resolution semantic segmentation[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2016.5168-5177.
[46] Zhao H,Shi J,Qi X,et al.Pyramid scene parsing network[A].IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2016.6230-6239.
[47] Luo P,Wang G,Lin L,et al.Deep dual learning for semantic image segmentation[A].Proceedings of the IEEE International Conference on Computer Vision[C].Venice,Italy:IEEE,2017.2737-2745.
[48] Goodfellow I J,Pouget-Abadie J,Mirza M,et al.Generative adversarial nets[A].Proceedings of the International Conference on Neural Information Processing Systems[C].USA:ACM,2014.2672-2680.
[49] Luc P,Couprie C,Chintala S,et al.Semantic segmentation using adversarial networks[J].CORR,2016,56(7):1-12.
[50] Metzen J H,Kumar M C,Brox T,et al.Universal adversarial perturbations against semantic image segmentation[A].Proceedings of the IEEE International Conference on Computer Vision[C].Venice,Italy:IEEE,2017.2774-2783.
[51] Xie C,Wang J,Zhang Z,et al.Adversarial examples for semantic segmentation and object detection[A].Proceedings of the IEEE International Conference on Computer Vision[C].USA:IEEE,2017.1378-1387.
[52] Zhu W,Xiang X,Tran T D,et al.Adversarial deep structural networks for mammographic mass segmentation[J].CORR,2017,43(6):1-9.
[53] Rezaei M,Harmuth K,Gierke W,et al.A conditional adversarial network for semantic segmentation of brain tumor[A].Proceedings of the International MICCAI Brainlesion Workshop[C].USA:IEEE,2017.241-252.
[54] Dai J,He K,Sun J.BoxSup:exploiting bounding boxes to supervise convolutional networks for semantic segmentation[A].IEEE International Conference on Computer Vision[C].USA:IEEE,2015.1635-1643.
[55] Khoreva A,Benenson R,Hosang J,et al.Simple does it:weakly supervised instance and semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2017.1665-1674.
[56] Lin D,Dai J,Jia J,et al.ScribbleSup:scribble-supervised convolutional networks for semantic segmentation[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2016.3159-3167.
[57] Vernaza P,Chandraker M.Learning random-walk label propagation for weakly-supervised semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2017.2953-2961.
[58] Tang M,Djelouah A,Perazzi F,et al.Normalized cut loss for weakly-supervised cnn segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2018.1818-1827.
[59] Russakovsky O,Deng J,Su H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
[60] Pathak D,Krahenbuhl P,Darrell T.Constrained convolutional neural networks for weakly supervised segmentation[A].Proceedings of the IEEE International Conference on Computer Vision[C].Santiago,Chile:IEEE,2015.1796-1804.
[61] Wei Y,Liang X,Chen Y,et al.STC:A simple to complex framework for weakly-supervised semantic segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,39(11):2314-2320.
[62] Jin B,Segovia M V O,Susstrunk S.Webly supervised semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2017.1705-1714.
[63] Hong S,Yeo D,Kwak S,et al.Weakly supervised semantic segmentation using web-crawled videos[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2018.2224-2232.
[64] Ahn J,Kwak S.Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2018.4981-4990.
[65] Cordts M,Omran M,Ramos S,et al.The cityscapes dataset[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2015.3213-3223.
[66] Brostow G J,Fauqueur J,Cipolla R.Semantic object classes in video:A high-definition ground truth database[J].Pattern Recognition Letters,2009,30(2):88-97.
[67] Ros G,Sellart L,Materzynska J,et al.The SYNTHIA Dataset:A large collection of synthetic images for semantic segmentation of urban scenes[A].Proceedings of the Computer Vision and Pattern Recognition[C].USA:IEEE,2016.3234-3243.
[68] Lin T Y,Maire M,Belongie S,et al.Microsoft COCO:Common objects in context[A].Proceedings of the European Conference on Computer Vision[C].USA:IEEE,2014.740-755. |