行人轨迹预测是视频监控的重要组成部分,因现有方法未充分利用场景特征信息造成其预测轨迹不符合生活常识,导致行人轨迹预测精度较低出现明显偏离真实轨迹的情况.针对上述不足本文提出一种基于Transformer动态场景信息生成对抗网络(Generative Adversarial Network,GAN)的行人轨迹预测方法.该方法利用动态场景特征提取模块的卷积神经网络(Convolutional Neural Networks,CNN)模型对目标行人的动态场景信息进行特征提取,同时生成器网络中的编码器利用Transformer对行人的社会交互信息特征以及轨迹信息特征进行建模.在ETH和UCY数据集上的实验结果表明,与Social GAN模型相比,本文方法在多个场景下的平均位移误差准确率提高了25.61%,最终位移误差准确率提高了38.44%.
分子通信是一种利用微小粒子编码、传输和接收信息的通信范式,具有生物兼容性好、尺寸小等特点,是用来构建纳米网络的非常有潜力的通信方案之一.分子通信的概念一经提出就吸引了广泛关注,众多学者的参与使其迅猛发展.目前,分子通信理论已经被广泛研究,相关实验也有了进展.尽管如此,构建实际的分子通信系统还有大量问题亟须解决.为促进分子通信领域更好发展,对分子通信的理论基础和当前研究进展进行系统性的总结是必要的.因此,本文对基于扩散的分子通信的基本概念和研究进展进行了阐述,包括信道模型、信号的编码调制机制以及接收机制;此外,还介绍了分子通信系统的同步机制、移动分子通信系统,以及分子通信实验系统的最新研究进展,并对分子通信未来的研究方向进行了展望.
为了提高氮化镓半桥结构的抗dv/dt特性,提出了一种适用于氮化镓半桥结构的高可靠性差分电流补偿新颖电平移位电路.该电路在自举电容作用下,将0V~5V输入电压转换为35V~40V输出电压,并且在浮点电压快速变化过程中,输出的驱动电压均保持稳定.电路采用电流镜结构传输信号,能够实现电平信号的快速传递,有效地减小传输延迟.对于浮点电压的快速变化导致移位电平器输出变化的问题,采用新颖的差分电流结构进行电流补偿,提高电路的抗dv/dt特性,获得高可靠性的输出电压.本电路基于标准0.35μm BCD工艺40 V的LDMOS耐压器件,对该电平移位电路在1MHz频率下进行验证.结果表明上升沿响应延迟为587.184ps,下降沿响应延迟为832.144ps,抗正的dv/dt变化为116V/ns以及对负dv/dt变化不敏感,该电路具有高速,高可靠性优点.
图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务. 近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展. 本文在简述图像超分辨率重建方法的基础上,全面综述了基于深度学习的单帧图像超分辨率重建的技术架构及研究历程,包括数据集构建方式、网络模型基本框架以及用于图像质量评估的主、客观评价指标,重点介绍了根据网络结构及图像重建效果划分的基于卷积神经网络的方法、基于生成对抗网络的方法以及基于Transformer的方法,并对相关网络模型加以评述和对比,最后依据网络模型和超分辨率重建挑战赛相关内容,展望了图像超分辨率重建未来的发展趋势.
基于深度学习的生物医学图像分割由于其精度的提高,可以更好地辅助医生做精确的诊断.目前主流的基于U-Net的分割模型通过多层卷积进行局部特征的提取,缺失了全局信息,使分割过于局部化而产生误差.本文通过自注意力机制和分解卷积策略对U-Net模型进行改进,提出一种新的深度分割网络SAU-Net,使用自注意力模块增加全局信息,将原U-Net中的级联结构改为逐像素相加,减小维度,降低计算量;提出一种快速简洁的分解卷积方法,将传统卷积分解为两路一维卷积,并加入残差连接强化上下文信息.在BRATS和Kaggle两个脑肿瘤数据集上进行的实验结果表明,SAU-Net在参数量和Dice系数上都有更优的性能.
光场相机利用二维影像同时记录空间中光线的位置和方向信息,能够恢复相机内部的光场,为三维重建提供了新的解决思路.围绕光场相机的三维重建问题,本文综述了光场数据获取手段,梳理和讨论了针对光场相机的标定算法,总结和分析了基于光场影像的三维深度信息恢复方法.在此基础上,介绍了当前主要的公开光场数据和算法.最后,展望了未来的研究方向,以期为后续研究者提供参考.
有源相控阵雷达作为支撑国家战略安全的核心装备,承担着国家战略反导、超视距探测、反隐身侦查、远程引导打击等重大任务,维护着我国的国土安全,更是我国大国地位的战略支柱.有源相控阵技术诞生于20世纪60年代的战火之中,军事上的迫切需要使其一经问世就引起了世界的轰动,它的出现甚至影响了世界军事的变革.相比于传统的单脉冲、脉冲多普勒等技术,它使雷达迈入了一个新时代,对雷达发展产生了深远和广泛的影响.有源相控阵雷达中每个天线单元都连接有对应的发射/接收组件,通过控制移相器改变天线孔径上的相位分布,实现天线不做机械转动而天线波束在空间进行快速电扫描.因此,相比于传统机械扫描雷达扫描惯性大、数据率有限、信息通道数少、不易满足自适应和多功能需求等缺点,有源相控阵雷达具备微秒时间内灵活且无惯性扫描、功能多、可靠性高、数据率大、雷达反射截面积低、自适应能力强、不易受到干扰等无可比拟的优势.随着现代国防的重大需求,雷达装备向着超视距、精准探测、极度隐身等方向持续发展,有源相控阵天线向着高频段、高增益、高指向精度、低副瓣电平等方向不断迈进,天线的高电磁指标对结构的刚度、轻量化、高效散热等设计参数提出了严苛的要求,天线内部各参数呈现高维度多场耦合关系,更容易受到战场恶劣环境的干扰而恶化天线的电性能,降低雷达的探测威力、制导精度与战场生存能力等.有源相控阵天线被誉为“三军之眼”,是涉及多学科交叉的典型装备,其结构、热、电磁之间存在的相互影响、相互制约的耦合关系定义为有源相控阵天线的机电热耦合问题.主要耦合问题有四点.其一,馈电误差影响天线电磁性能:有源相控阵天线馈电网络误差、辐射单元失效、热敏电子元器件(如发射/接收组件中的移相器)性能温漂、天线单元互耦等都会引起馈电电流的幅相误差,导致天线电磁性能恶化.其二,结构误差影响天线电磁性能:有源相控阵天线制造、装配存在随机误差,服役中振动、冲击、热功耗等导致阵面变形,最终引起辐射单元位置偏移,天线阵面电磁幅相分布发生变化,导致发射波束变化,最终使天线电性能受到严重影响.其三,热影响天线电磁性能:有源相控阵天线阵面上安装有成千上万的发射/接收组件,热功耗巨大,一方面会导致天线阵面的结构热变形,另一方面也会引起器件的性能下降,最终导致天线电磁性能的恶化.其四,结构、热与电磁性能耦合:三者中任一个变化,都会引起其他两个的变化.有源相控阵雷达在不同占空比工作模式下,其天线阵面电磁幅相会做出相应分布,导致热功耗随之变化,从而引起温度分布发生变化,进而影响天线阵面的结构热变形.因此有源相控阵天线的机电热耦合问题已成为制约其稳健发展,进一步提升性能的瓶颈问题.本文梳理了陆基、舰载、机载、弹载、星载不同平台上有源相控阵天线的发展动态,分析了各武器平台上有源相控阵天线的结构特点,归纳了“陆、海、空、天”不同战场环境的服役载荷对有源相控阵天线的影响,然后总结了天线结构误差、天线罩高温烧蚀、T/R组件馈电误差、天线单元失效等多重因素影响下有源相控阵天线机电热耦合机理分析与建模方法,机电热耦合技术在有源相控阵天线制造精度、高效散热以及轻量化综合优化、稀疏阵设计等领域的应用,以及服役环境下有源相控阵天线状态监测、位移场重构、电性能补偿等关键保障技术,最后探讨了机电热耦合技术的未来研究方向以及在不同研究领域的应用前景.
以深度学习为代表的人工智能技术是解决电磁目标识别问题的一种有效方法.然而,在识别多模式电磁目标时,目标内部不同模式间数据的差异可能掩盖目标个体间的差异,当某种模式训练样本缺失或稀少时,该模式下的目标识别性能会显著下降.为此,提出一种基于孪生网络的电磁目标跨模式识别算法,在度量学习框架下通过优化设计网络结构和损失函数,引导网络在分类学习过程中拉近同一目标各模式数据间的距离,拉远不同目标数据间的距离,并结合邻近判决准则实现多模式电磁目标在非均衡数据集上的跨模式识别.基于实际数据的测试结果表明,在相同数据集和网络规模条件下,所提方法的跨模式识别率较经典卷积神经网络方法和数据增强方法提升20%.
基于深度学习的表情动作单元识别是计算机视觉与情感计算领域的热点课题.每个动作单元描述了一种人脸局部表情动作,其组合可定量地表示任意表情.当前动作单元识别主要面临标签稀缺、特征难捕捉和标签不均衡3个挑战因素.基于此,本文将已有的研究分为基于迁移学习、基于区域学习和基于关联学习的方法,对各类代表性方法进行评述和总结.最后,本文对不同方法进行了比较和分析,并在此基础上探讨了未来动作单元识别的研究方向.
本文研究了一种适用于随机混合业务的传输方案,其可以对随机到达的不同业务实现不等差错保护,从而满足不同业务对于传输质量的不同需求.该方案的主要优势是,利用一套编译码器满足不同业务基本的质量要求;而对于要求较高的业务,则采用级联外码的技术.另一个有别于传统方法的创新点是,该方案采用叠加的方式实现业务类型标识比特的传输,既不消耗额外的带宽,也不消耗额外的传输能量.仿真结果表明,本文所提出的编译码方案能高效准确地对业务类型进行识别,从而有效地实现随机混合业务的不等保护.
现有的图像压缩感知(Image Compressive Sensing, ICS)优化启发网络沿用了传统算法的像素域优化思想,构建了像素域的图像信息流动通道,而没有充分利用卷积神经网络所提取的图像特征中的信息.对此,本文提出了在特征域构建信息流的思想,并设计了一种特征域优化启发ICS网络(Feature-Space Optimization-Inspired Network, FSOINet)以实现该思想.考虑到卷积操作感受野较小,本文通过将自注意力模块引入FSOINet以更高效地利用图像非局部自相似性,进一步提高重构质量,我们将其命名为FSOINet+.此外,本文还提出把迁移学习策略应用于不同采样率图像压缩感知重构网络训练中,提高网络学习效率与重构质量.仿真实验表明,本文所提出的网络在峰值信噪比(Peak Signal to Noise Ratio, PSNR)、结构相似性(Structural Similarity Index Measure, SSIM)与视觉效果上都优于现有的最优ICS重构方法,FSOINet与FSOINet+在Set11数据集上与OPINENet+相比重构图像PSNR分别平均提升了1.04dB和1.27dB.
为了能够更好地利用频率资源,全球导航卫星系统的多种信号使用了二进制偏移载波(Binary Offset Carrier,BOC)调制.传统基于匹配滤波的BOC信号捕获算法为了防止相关峰中的零点降低检测概率,需要采用较小的码相位搜索间隔,这会大幅提升相关处理的计算复杂度.针对该问题,本文提出了基于多相分解的BOC信号高效捕获算法.该算法对捕获中的相关累加进行多相分解,通过基带数据重采样和选择特定码相位搜索间隔,实现了不同搜索相位下相关值的高效复用.对于北斗系统所采用的BOC(1,1)和BOC(14,2)调制,为了达到相同的检测性能,本文所提算法的计算复杂度仅约为传统算法的1/4和1/2,这对卫星导航终端的小型化和低功耗设计具有重要意义.
在正确地规划合理路径方面,行人轨迹预测具有重要的意义.大多数现有轨迹预测方法在考虑周围行人的影响时,都是简单地将周围行人全部考虑在内,这必然带来的冗余信息.本文提出了一种基于多模式时空交互的行人轨迹预测模型,该模型通过多模式行人空间交互模块对不同行人在不同情况下给予不同的权重,使得模型可以有效减小冗余信息带来的影响.并且本文的模型针对于输入轨迹信息的不同重要程度,设计了加权信息融合模块在原轨迹信息的基础上融合了赋予不同权重的历史轨迹信息,使得模型的轨迹信息更加有效.此外,该模型采用了时间卷积网络模块来捕获行人的时间交互.实验结果表明,在公开数据集ETH和UCY上,相比于Social-STGCNN平均位移误差(Average Displacement Error, ADE)和终点位移误差(Final Displacement Error, FDE)分别降低了15%和14%.
街景图像的分割在工业运用中具有十分重要的作用,但是街景图像具有种类繁多、光照多变等特点,此外,街景分割任务在追求准确性的同时要兼顾实时性,以上特点使得该任务具有很大的挑战性.本文针对这一挑战性任务提出了一个由空间路径和细节路径组成的双路径网络(Dual-path Fusion Network,DFNet),其中细节路径利用高分辨率的输入得到丰富的边界信息,空间路径利用细节路径产生的高质量特征图获得足够多的语义信息;网络的开始嵌入了一个可训练的图像预处理模块(Image Preprocessing Module,IPM),该模块可以使光照不同的图像进入网络正式训练之前在RGB通道上具有方差和均值的一致性;经过预处理模块之后的特征图会分别输入到细节路径和空间路径;本文提出了一个条状注意力细化模块(Attention Refinement Module,ARM),并将其放到空间路径的最后,可以将通道级信息和局部条状信息有效结合起来;在网络的最后,利用图像融合模块(Feature Fusion Module,FFM)对两条路径的特征信息进行融合,得到最后的分割结果.同时,本文还提出了一种基于小目标重组的“复制粘贴”数据增强方法,减弱了小目标样本数据不均衡的问题,同时扩充了数据集,该算法可以提升单个网络近2%的平均交并比(mIoU).本文利用所提算法在CityScapes和CamVid数据集上进行了实验验证,对于CityScapes数据集来说,输入大小为1 024×2 048,其每秒处理帧数(FPS)和mIoU分别达到了98和70.1%;对于CamVid数据集来说,输入大小为720×960,其FPS和mIoU分别达到了208和65.7%.与已有算法相比,本文算法的推理速度要优于最先进的实时街景语义分割算法,同时保持了较高的分割结果准确性,本文算法在街景图像语义分割速度和分割性能之间取得了良好的平衡.
近年来,基于深度卷积神经网络的图像超分辨率技术取得了突出进展,并主导了当前的超分辨率技术的研究.但是,性能的改进,往往以参数量的急剧增加为代价,这限制了超分辨率方法的实际应用.本文设计了一个轻量级单图像超分辨率深度卷积网络,主要贡献包括:提出了一个多尺度的特征融合模块,使用不同感受野的卷积核,提取多种尺度的特征;提出了一个通道搅乱注意力模块,促进特征通道之间的信息流动,并增强特征选择能力;提出了一个全局特征融合连接模块,提高浅层特征的利用率.实验证明,本文方法与当前代表性的方法MSRN(Multi-Scale Residual Network)相比,参数量减少了3/4,重建的高分辨率图像的主观和客观质量均显著更好.
知识库问答(Knowledge Base Question Answering,KBQA)借助知识库中精度高、关联性强的结构化知识,为给定的复杂事实型问句提供准确、简短的答案.语义解析是知识库问答的主流方法之一,该类方法在给定的问句语义表征形式下,将非结构化的问句映射为结构化的语义表征,再将其改写为知识库查询获取答案.目前,面向知识库问答的语义解析方法主要面临三个挑战:首先是如何选择合适的语义表征形式以表达问句的语义,然后是如何解析问句的复杂语义并输出相应的语义表征,最后是如何应对特定领域中数据标注成本高昂、高质量数据匮乏的问题.本文从上述挑战出发,分析了知识库问答中常用的语义表征的特点与不足,然后梳理现有方法并总结分析其如何应对问句的复杂语义,接着介绍了当前方法在标注数据匮乏的低资源场景下的尝试,最后展望并讨论了面向知识库问答的语义解析的未来发展方向.
近年来,以机器学习算法为代表的人工智能技术在计算机视觉、自然语言处理、语音识别等领域取得了广泛的应用,各式各样的机器学习模型为人们的生活带来了巨大的便利.机器学习模型的工作流程可以分为三个阶段.首先,模型接收人工收集或算法生成的原始数据作为输入,并通过预处理算法(如数据增强和特征提取)对数据进行预处理.随后,模型定义神经元或层的架构,并通过运算符(例如卷积和池)构建计算图.最后,模型调用机器学习框架的函数功能实现计算图并执行计算,根据模型神经元的权重计算输入数据的预测结果.在这个过程中,模型中单个神经元输出的轻微波动可能会导致完全不同的模型输出,从而带来巨大的安全风险.然而,由于对机器学习模型的固有脆弱性及其黑箱特征行为的理解不足,研究人员很难提前识别或定位这些潜在的安全风险,这为个人生命财产安全乃至国家安全带来了诸多风险和隐患.研究机器学习模型安全的相关测试与修复方法,对深刻理解模型内部风险与脆弱性、全面保障机器学习系统安全性以及促进人工智能技术的广泛应用有着重要意义.本文从不同安全测试属性出发,详细介绍了现有的机器学习模型安全测试和修复技术,总结和分析了现有研究中的不足,探讨针对机器学习模型安全的测试与修复的技术进展和未来挑战,为模型的安全应用提供了指导和参考.本文首先介绍了机器学习模型的结构组成和主要安全测试属性,随后从机器学习模型的三个组成部分即数据、算法和实现,六种模型安全相关测试属性即正确性、鲁棒性、公平性、效率、可解释性和隐私性,分析、归纳和总结了相关的测试与修复方法及技术,并探讨了现有方法的局限.最后本文讨论和展望了机器学习模型安全的测试与修复方法的主要技术挑战和发展趋势.
现有视频压缩感知神经网络重构算法采用的光流对齐和可变形卷积对齐的运动补偿方式存在误差积聚、信息感知范围有限等问题,极大地限制了其有效性和实用性.为了在不引入额外参数的条件下自适应提取参考帧的全局信息,本文提出了利用注意力机制实现视频压缩感知重构过程中运动估计/运动补偿的创新思想,并设计了时域注意力特征对齐网络(Temporal-Attention Feature Alignment Network,TAFA-Net)进行实现.在此基础上,提出了联合深度重构网络(Joint Deep Reconstruction Network Based on TAFA-Net,JDR-TAFA-Net),实现非关键帧的高性能重构.先利用本文所提的TAFA-Net获得参考帧到当前帧的对齐帧;然后,利用基于自编码器架构的融合网络充分提取已有帧信息,增强非关键帧的重构质量.仿真结果表明,与最优的迭代优化算法SSIM-InterF-GSR相比,所提算法重构帧的峰值信噪比(Peak Signal to Noise Ratio,PSNR)最高提升了4.74dB;与最优的深度学习算法STM-Net相比,所提算法重构帧的PSNR最高提升了0.64dB.
量子生成对抗网络是量子机器学习算法领域研究热点之一,但其生成过程具有较大的随机性,不太适用于现实场景.为了解决该问题,提出了一种生成过程可控的量子条件生成对抗网络(Quantum Conditional Generative Adversarial Network,QCGAN)算法,其中条件信息采用one-hot形式进行多粒子W态编码,并通过向生成器和判别器输入条件信息达到稳定模型生成过程的目的.性能评估表明,与经典GAN、CGAN相比,本算法可生成离散数据,且将时间复杂度从 O ( N 2 ) 降为 O ( N ) ;与带条件约束的量子生成对抗网络QuGAN相比,QCGAN消耗更少的量子资源.最后,以BAS(3,3)数据集和量子混合态生成为例,选用PennyLane平台进行仿真实验,结果表明QCGAN算法经过训练可有效收敛到Nash均衡点,进而验证了算法的实验可行性.
微波谐振式传感器具有低成本、高灵敏度、实时、无损检测等特点,在生物、医疗、环境等领域都有着广阔的应用前景.一般来说,微波谐振式传感器通过传输线激励谐振单元,通过谐振频率偏移等特征变化获得待测量.本文对微波谐振式传感器现有研究成果进行了详细的综述.首先简要介绍了微波谐振式传感器分类、基本工作原理及关键性能指标,其次以位移传感器、介质传感器及液体传感器这3种类型总结当前微波谐振式传感器国内外研究进展,之后着重探讨了群智能算法、机器学习等优化算法在微波谐振式传感器优化设计方面的应用,最后展望了微波谐振式传感器的发展前景以及存在的挑战.
云存储的外包特性使得数据的所有权与管理权/持有权分离,导致数据安全成为用户关注的焦点之一.作为云存储中数据安全的一个组成部分和数据生命周期的最后一个阶段,外包数据确定性删除研究的是如何证实留存于云服务提供商、数据使用者和网络中的数据是失效、不可恢复的,从而防止数据滥用和隐私泄漏等安全隐患.其主要研究思路是利用密码学相关理论和技术将数据删除问题转换为密钥的安全管控和删除问题,即在假定加密算法是安全的情况下,安全管控和删除密钥将使得外包的密文数据不能被解密和访问,从而实现数据在计算上的删除.本文首先介绍了外包数据确定性删除的研究背景及其主要研究思路,并阐述了作者对于该问题的思考,包括该问题的模型及其蕴含的关键科学问题;之后,分类梳理了国内外研究现状,分析了每类方法的特点和发展趋势;接着,通过几个有着众多用户的应用案例展示了外包数据确定性删除所预想的部分功能;最后,探讨了该领域未来的研究方向.
针对伺服级共享控制决策中权衡安全性、干预度与驾驶体验的问题,提出基于高斯隐马尔可夫模型(Gaussian Hidden Markov Model,GHMM)的人机共享控制区域化决策算法.此算法利用高斯分布函数表征驾驶人的实时相对驾驶能力;利用区域化的高斯矢量环境风险场量化模型表征不同环境区域的环境风险值以及其模糊风险等级;最后综合驾驶人绝对能力、驾驶状态以及环境风险实现人机共享控制中控制权的高可靠、合理分配.实验表明,本文提出的人机共享区域化决策模型能够在考虑驾驶人相对能力及环境风险源所在方位的基础上给予较为合理的控制权柔性分配方案,有效降低风险至智能驾驶模型可控范围内.
非合作目标识别常常面临少量不完备的训练样本、训练样本与测试样本信噪比不一致等现象,本文为此提出了一种基于测地线流式核的雷达目标高分辨距离像鲁棒识别方法.该方法沿格拉斯曼流形中测地线积分提取不变特征,且通过核函数映射可获得解析特征提取表达式.该方法还可作为预处理手段对数据降噪,进一步提高其他算法的识别准确率.实验结果表明,对于信噪比失配和少量不完备样本等问题,该方法都具有鲁棒目标识别能力,并且满足实时性要求.
工作在复杂环境下的多元退化设备面临失效数据少、多源信息融合准确度低和监督学习数据不平衡等问题,对此本文提出一种基于时间序列生成对抗网络(Time-series Generative Adversarial Networks, TimeGAN)与单分类支持向量机(One-Class Support Vector Machine, OCSVM)组合模型的小子样数据增广方法.方法引入了TimeGAN模型拟合真实数据时间序列相关性,从而生成新的多元退化设备数据.本文提出了一种基于最大均值差异改进方法的可信度判据,避免强相关特征对生成数据质量评价的影响,通过使用T-分布随机邻近嵌入(T-distributed Stochastic Neighbor Embedding, T-SNE)和全局最大均值差异(Global Maximum Mean Discrepancy, GMMD)的组合方法,定性定量地评价生成数据的质量水平.基于训练后的OCSVM模型,对生成数据进行异常检测与剔除,进一步提高生成数据的质量.以航空发动机数据集C-MAPSS为例进行方法验证分析,通过与其他数据增强模型对比验证了所提方法的可行性和有效性.
城市空气污染因空间扩散特性呈现出区域内的浓度高关联性.因此如何通过多个空气污染监测站的时空数据预测特定目标地点的污染情况,以解决站点分布不匀的问题,是一个重要的研究工作.本文结合空气污染物因素特性和气象因素的多维度影响,提出了一个利用区域内多站点空间监测数据实现特定目标站点的空气污染物浓度预测模型.该模型通过多层卷积神经网络(Convolutional Neural Network,CNN)实现城市多站点污染物浓度与气象数据之间的维度关联特征及空间关联特征学习,进而利用基于多层长短期记忆网络(Long Short-Term Memory,LSTM)的自编码网络实现多站点浓度的时序关联特征分析.实验通过真实数据集验证,所提出的预测模型获得了高于传统机器学习污染物浓度预测模型的预测准确度,且在多个城市数据集上验证了模型的泛化能力.
群组行为识别目前是计算机视觉领域的一个研究热点,在智能安防监控、社会角色理解和体育运动视频分析等方面具有广泛的应用价值.本文主要针对基于深度学习框架下的群组行为识别算法进行综述.首先,依据群组行为识别方法中“是否包含组群成员交互关系建模”这一核心技术环节,将现有算法划分为“无交互关系建模的群组行为识别”和“基于交互关系描述的群组行为识别”两大类.其次,鉴于“无交互关系建模的群组行为识别方法”主要是聚焦于如何对“群组行为时序过程的整体时空特征的计算和提纯”进行设计的,故本文从“多流时空特征计算融合”“个人/群体多层级时空特征计算合并”“基于注意力机制的群组行为时空特征提纯”3类典型算法进行概述.再次,对于“基于交互关系建模的群组行为识别”,依据对交互关系描述方法的不同,将其归纳为“基于组群成员全局交互关系建模”“基于组群分组下的交互关系建模”和“基于关键人物为主的核心成员间交互关系建模”3种类别分别概述.然后,对群组行为识别相关的数据集进行介绍,并对不同识别方法在各个数据集的测试性能进行了对比和总结.最后,分别从群组行为类别定义的二元性、交互关系建模的难点与不足、群组行为数据集弱监督标注和自学习、视角变化以及场景信息综合利用等方面概述了几个具有挑战性的问题和未来研究的方向.
近年来,随着推荐系统研究的不断深入,推荐系统的公平性受到越来越多关注. 流行度偏差也即流行的物品比非流行的物品更容易被推荐,是影响其公平性的重要因素之一. 流行度偏差对推荐系统的各利益相关者都有严重的影响,引起研究者的广泛关注. 相关研究主要通过推荐结果重排或学习过程中融合正则化项提升非流行物品的曝光率,而非流行物品的交互数据极度稀疏成为研究的瓶颈. 针对此问题,本文提出基于自监督学习的去流行度偏差推荐方法,解决两个难点:(1)准确学习交互数据极度稀疏的非流行物品的表征;(2)提升非流行物品曝光率的同时,兼顾不同用户对流行和非流行物品的偏好. 具体地,从用户的角度,提出流行物品和非流行物品双视图的用户偏好学习方法,准确学习用户对流行和非流行物品的真实偏好;从物品的角度,采用自监督学习,利用互信息最大化捕获非流行物品与流行物品间的潜在关系,辅助提升非流行物品嵌入学习的准确性. 最后,设计用户流行度偏好一致性、资格公平性等指标,并通过三个公开数据集的大量实验说明了本文方法在提升推荐性能的同时,能有效缓解流行度偏差问题并具有较强的通用性.
在当前移动互联网时代,数据量增长迅速,服务计算能力不断增强,数据隐私保护和服务环境可信成为备受关注的重要问题.本文研究面向卷积神经网络典型应用场景的可信隐私服务计算模型,探索支持同态加密的数据和模型计算方法,保护数据隐私.构建基于区块链和智能合约技术服务过程存证及计算权益分配方法,保证服务计算的公开透明、可信可追溯.探索资源提供者、模型拥有者及用户的新型云环境资源数据服务模式,促进资源有效整合,发展共享经济.最后,通过实验分析该模型的隐私保护方法.
为有效利用运动想象脑电信号(Motor Imagery Electroencephalogram,MI-EEG)的频域信息并精确反映脑电极之间的非线性因果交互作用,本文提出一种基于连续小波变换和符号传递熵的脑功能网络构建方法.首先,对每导MI-EEG进行连续小波变换,求得其时-频-能量矩阵;然后,将与运动想象密切相关的频带内各频率所对应的时间-能量序列依次拼接,得到各导联的一维时频能量序列;最后,基于任意两电极时频能量序列间的符号传递熵计算连接矩阵,构建脑功能网络.实验结果表明,以电极时频能量序列间的符号传递熵构建的脑功能网络,能够有效反映MI-EEG的时频特征和非线性特征信息传递,相比于传统脑网络构建方法,更有利于增强不同运动想象任务的可分性.
随着集成电路规模的日益增长, 需要处理的线网数量显著增多, 层分配算法运行时间增大成为限制高效设计布线方案的重要因素; 此外在生产工艺中, 通孔的制造成本较高. 针对以上两个问题, 本文提出了两种新颖的策略分别用于优化算法运行时间和通孔数量: (1)一种高效的基于区域划分的并行策略, 实现各区域在并行布线阶段负载均衡, 以提高并行布线的效率; (2)基于线网等效布线方案感知的通孔优化策略, 决定各线网对布线资源使用的优先级, 进而减少层分配方案的通孔数量. 最终将上述两种策略相结合, 提出了一种面向超大规模集成电路物理设计的通孔感知的并行层分配算法. 实验结果表明该算法对通孔数量和运行时间均有良好的优化效果.
挖矿恶意软件是近年来出现的一种新型恶意软件,其加密运算模式给受害用户带来巨大损失.通过研究挖矿恶意软件的静态特征,本文提出一种基于威胁情报层次特征集成的挖矿恶意软件检测方法.从挖矿恶意软件威胁情报的角度,本文分别使用字节特征层、PE(Portable Executable)结构特征层和挖矿操作执行特征层训练挖矿恶意软件分类器,利用不同恶意软件特征对恶意软件的检测偏好,使用集成方法在层次特征的基础上组建挖矿恶意软件检测器.在实验评估中,本文使用模拟实验室环境数据集和模拟真实世界数据集进行模型性能测试.实验结果表明,本文所设计的层次特征集成的挖矿恶意软件检测方法在模拟真实世界数据集上取得了97.01%的准确率,相对挖矿恶意软件检测基线方法获取了6.13%的准确率提升.
针对战场通信对抗协同干扰中的干扰功率分配难题,本文基于多智能体深度强化学习设计了一种分布式协同干扰功率分配算法.具体地,将通信干扰功率分配问题构建为完全协作的多智能体任务,采用集中式训练、分布式决策的方式缓解多智能体系统环境非平稳、决策维度高的问题,减少智能体之间的通信开销,并加入最大策略熵准则控制各智能体的探索效率,以最大化累积干扰奖励和最大化干扰策略熵为优化目标,加速各智能体间协同策略的学习.仿真结果表明,所提出的分布式算法能有效解决高维协同干扰功率分配难题,相比于已有的集中式分配算法具有学习速度更快、波动性更小等优点,且相同条件下干扰效率可高出集中式算法16.8%.
随着数据特征维数的增加,如何在少量有标签和大量无标签高维样本的情况下选择相关的特征子集已成为特征选择领域的热点问题.针对现有半监督特征选择算法直接忽略特征选择与局部结构学习之间的相互作用,从而难以有效获取样本分布结构的问题,本文提出了一种基于自适应图学习的半监督特征选择(Semi-supervised Feature Selection with Adaptive Graph learning,SFSAG)算法.利用标签传播将特征空间的稀疏投影学习和近邻图的构建有效地结合起来,实现在选择相关特征的同时还能学习样本的局部结构;自适应地利用样本在投影特征空间中的相似性信息构建可靠的近邻图,从而有效降低噪声特征的干扰并选择更具判别性的特征子集.多种数据集上的实验验证了SFSAG的有效性及其相对于现有半监督特征选择算法的优越性.
户外视觉系统极易受到雾霾等恶劣天气影响,采集到的图像/视频质量严重下降,这不仅影响人眼的主观感受,也给后续的智能化分析带来严峻挑战.近年来,学者们将深度学习应用于图像去雾领域,取得了诸多的研究成果.但是雾霾图像场景复杂多变、降质因素众多,这对去雾算法的泛化能力提出了很高的要求.本文主要总结了近年来基于深度学习的单幅图像去雾技术研究进展.从先验知识和物理模型、映射关系建模、数据样本、知识迁移学习等角度出发,介绍了现有算法的研究思路、具体特点、优势与不足.尤其侧重于近两年来新出现的训练策略和网络结构,如元学习、小样本学习、域自适应、Transformer等.另外,本文在公共数据集上对比了各种代表性去雾算法的主客观性能、模型复杂度等,尤其是分析了去雾后的图像对于后续目标检测任务的影响,更全面地评价了现有算法性能的优劣,并探讨了未来可能的研究方向.
Virtex-5系列芯片没有官方提供的专用软错误缓解(Soft Error Mitigation,SEM)IP核,需自行设计故障注入系统.本文选用XC5VFX130T型现场可编程门阵列(Field Programmable Gate Array,FPGA)芯片利用单帧部分重构功能达到等同于SEM IP故障注入效果,实现对FPGA电路系统的抗单粒子翻转能力评估测试.利用逐位注入故障模式对XC5VFX130T型FPGA的配置位逐个注入故障,获得待评估电路的敏感配置位信息;对待测电路进行三模冗余防护加固,利用累积故障注入模式连续随机注入模拟单粒子辐照试验环境,得到待评估电路的功能中断截面,进而实现对基于XC5VFX130T型FPGA系统的抗单粒子翻转加固效果的评估.研究表明,基准电路(移位寄存器链等)评估得到的功能中断截面与实际辐照试验中的功能中断截面曲线变化一致,为机载电子的单粒子效应适航评估提供了支持.
CPU性能基准测试旨在给出可对比、定量的指标数据,为产品选型提供依据,它已成为引领计算产业发展的风向标之一.CPU技术发展迅速,性能基准测试也在不断演进.本文对包含SPEC CPU在内的主流基准测试进行了研究,从测试目标、测试方法等角度,综述主流CPU基准测试的演进过程、最新研究成果,以及通用CPU性能指标和基准测试需求,分析了通用CPU性能基准测试所面临的挑战,并对今后可能的研究趋势进行了展望.
利用数据类别间层次结构关系进行分类学习任务广泛存在于疾病诊断、图像标注等领域.然而,数据特征空间的高维性,使得分层分类学习面临着时间复杂度高和存储负担大等问题.另外,现有研究工作都假设训练集标记粒度是充分细化,与实际分层分类学习中划分细粒度标记代价高,类别标记间存在语义歧义性等矛盾.为解决上述问题,提出一种由粗到细的分层特征选择算法.该算法考虑类内一致性和兄弟节点间的差异性以选择有代表性特征,同时在特征选择的过程中实现预测训练样本未知的细粒度标记.在7个基准数据集上的实验结果表明,所提算法的分类性能优于一些先进的对比算法,且能处理标记粒度不够细化的情况.
视网膜血管检测有助于医生诊断视网膜疾病,而以往基于特征融合的算法难以解决视网膜血管检测中出现的漏分割问题,且分割准确率较低.本文对特征融合方式做出进一步探索,并提出一种基于语义与形态特征融合的算法,通过挖掘输入特征中蕴含的语义与形态信息,建模特征间的相关关系.随后,使用特征融合模块实现多模态特征自适应地融合.在公开数据集DRIVE以及STARE上的实验结果表明,文章算法优于现有的语义分割模型,尤其在敏感性上,比传统U-Net网络提升了8.20%.
本文面向低轨卫星通信,研制了一款基于多层低温共烧陶瓷(Law Temperature Co-fired Ceramics,LTCC)工艺的K波段四通道集成接收前端模块.该集成前端模块工作频段为17.7~20.2 GHz,腔体内集成了低噪声放大器、6位移相器、5位衰减器、串并转换器等MMIC芯片和多层陶瓷电容,功率合成器和低通滤波器等无源器件嵌入多层基板中,整体尺寸为28×28×1.35 mm3.每个通道的带内测试增益大于31.5 dB,噪声系数为1.7~1.9 dB,对28~30 GHz的发射频段具有大于61.5 dBc的抑制度,相位控制误差为4.7°,幅度控制误差为1 dB.该设计具有集成度高、增益高、抑制度高、噪声低等突出优点.
由于行人交互的复杂性和周围环境的多变性,行人轨迹预测仍是一项具有挑战性的任务.然而,基于图结构的方法建模行人之间的交互时,存在着网络感受野小、成对行人间的相互交互对称、固定的图结构不能适应场景变化的问题,导致预测轨迹与真实轨迹偏差较大.为了解决这些问题,本文提出一种基于全局自适应有向图的行人轨迹预测方法(pedestrian trajectory prediction method based on Global Adaptive Directed Graph,GADG).设计全局特征更新(Global Feature Updating,GFU)和全局特征选择(Global Feature Selection,GFS)分别提升空间域和时间域的网络感受范围,以获取全局交互特征.构建有向特征图,定义行人间的不对称交互,提高网络建模的方向性.建立自适应图模型,灵活调整行人间的交互关系,减少冗余连接,增强图模型的自适应能力.在ETH和UCY数据集上的实验结果表明,与最优值相比,平均位移误差降低14%,最终位移误差降低3%.