目标检测是计算机视觉领域中最基础且最重要的任务之一,是行为识别与人机交互等高层视觉任务的基础.随着深度学习技术的发展,目标检测模型的准确率和效率得到了大幅提升.与传统的目标检测算法相比,深度学习利用强大的分层特征提取和学习能力使得目标检测算法性能取得了突破性进展.与此同时,大规模数据集的出现及显卡计算能力的极大提高也促成了这一领域的蓬勃发展.本文对基于深度学习的目标检测现有研究成果进行了详细综述.首先回顾传统目标检测算法及其存在的问题,其次总结深度学习下区域提案和单阶段基准检测模型.之后从特征图、上下文模型、边框优化、区域提案、类别不平衡处理、训练策略、弱监督学习和无监督学习这八个角度分类总结当前主流的目标检测模型,最后对目标检测算法中待解决的问题和未来研究方向做出展望.
为了提高分析信号的信噪比,本文提出了一种基于变分模态分解的变步长归一化最小均方自适应滤波降噪方法.该方法对原信号进行变分模态分解并区分信号分量和噪声分量,再对噪声分量进行间隙阈值降噪处理并将其作为参考信号输入自适应滤波器,通过自适应算法迭代处理得到降噪后的信号分量,并通过重构算法得到最终降噪后的信号.本文还在变分模态分解的基础上使用小波阈值降噪和间隙阈值降噪方法按不同方案进行降噪处理并得到最佳算法,将其与所提算法进行对比.实验结果表明,本文所提自适应滤波降噪方法的降噪效果比阈值降噪最佳方法效果更好.
显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索、公共安全等领域均有广泛的应用.本文对近期基于深度学习的显著性目标检测模型进行了系统综述,从检测粒度的角度出发,综述了将深度学习引入显著性目标检测领域之后的研究成果.首先,从三个方面对显著性目标检测方法进行了论述:稀疏检测方法,密集检测方法以及弱监督学习下的显著性目标检测方法.然后,简要介绍了用于显著性目标检测研究的主流数据集和常用性能评价指标,并对各类主流模型在三个使用最广泛的数据集上进行了性能比较分析.最后,本文分析了显著性目标检测领域目前存在的问题,并对今后可能的研究趋势进行了展望.
针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像中飞机目标散射点离散化程度高,周围背景干扰复杂,现有算法对飞机浅层语义特征表征能力弱等问题,本文提出了基于注意力特征融合网络(Attention Feature Fusion Network,AFFN)的SAR 图像飞机目标检测算法.通过引入瓶颈注意力模块(Bottleneck Attention Module,BAM),本文在AFFN中构建了包含注意力双向特征融合模块(Attention Bidirectional Feature Fusion Module,ABFFM)与注意力传输连接模块(Attention Transfer Connection Block,ATCB)的注意力特征融合策略并合理优化了网络结构,提升了算法对飞机离散化散射点浅层语义特征的提取与判别.基于自建的Gaofen-3 与TerraSAR-X 卫星图像混合飞机目标实测数据集,实验对AFFN与基于深度学习的通用目标检测以及SAR图像特定目标检测算法进行了比较,其结果验证了AFFN对SAR图像飞机目标检测的准确性与高效性.
构建空天地一体化信息网络是第六代通信系统(the Sixth Generation,6G)的重要目标,无线光通信相较于射频(Radio Frequency,RF)通信技术具有容量大、速率高、抗干扰能力强等优势,已成为建立全球无缝覆盖空间网络的重要技术.本文综述了基于自由空间光通信(Free Space Optical Communication,FSOC)的空天地一体化网络国内外建设及相关标准化现状,相较于现有综述文献,涵盖了更多最新研究工作,并针对物理层和上层指出一体化FSOC网络设计需要关注的重要因素,对大气信道建模、“捕获、瞄准和跟踪”(Acquisition Pointing and Tracking,APT)、拓扑控制、路由、资源分配、可靠传输协议、微波协作传输几种重要通信技术进行总结和分析,并指出其未来发展趋势和面临的挑战.
微波光子学是一门研究光与微波相互作用的新型交叉学科,旨在利用现代光学技术实现高频宽带微波信号产生、传输、处理和测量.其中,微波光子传感是微波光子学一个重要的研究领域,它采用光学传感器实现温度、应变、压力等传感参量光域感知,基于微波光子技术实现光域传感信息到微波域的线性映射和转换,结合微波信号处理技术实现传感信号解调,具有传感精度高、测量速度快等显著优势.本文系统性地回顾了微波光子传感技术最新研究进展,介绍了各类微波光子传感技术的基本工作原理,并展望了未来的研究方向和发展趋势.
交叉眼干扰是单脉冲雷达最有效的干扰方式之一,增益是衡量交叉眼干扰性能的重要指标.本文在两源反向交叉眼干扰(TRCJ, Two source Retro-directive Cross-eye Jamming)和多源线阵反向交叉眼干扰(LMRCJ, Linear array Multi-source Retro-directive Cross-eye Jamming)增益模型的基础上,以4源线阵反向交叉眼干扰为例,对相同幅值比下LMRCJ的增益最大值进行了推导,提出了LMRCJ整体相位容限计算方法,综合考虑LMRCJ不同环路之间的相位控制方式、幅相波动以及平台回波等因素,对比分析了LMRCJ和TRCJ的增益值和幅相容限.仿真结果表明:不考虑平台回波时,在相同的幅值比下,TRCJ的增益最大值不低于LMRCJ的增益最大值,且增益值高时TRCJ的相位容限比LMRCJ的相位容限更宽松;当LMRCJ和TRCJ的幅相控制能力相同且均较弱时,LMRCJ的增益值高于TRCJ的增益值;考虑平台回波时,在高干信比(JSR, Jam-to-Signal Ratio)下,LMRCJ和TRCJ的增益及相位容限规律与隔离平台回波时的一致.论文研究可以为交叉眼干扰机的工程设计提供指导.
地图匹配是许多位置服务与轨迹挖掘应用的基础.随着定位技术和位置服务应用的发展,地图匹配研究不断演进,从早期基于高采样率GPS(Global Position System)的实时匹配,到近期基于低采样率GPS轨迹的离线匹配、再到当前非GPS定位数据或高精度地图匹配。迄今已有许多地图匹配算法相继提出,但鲜有研究对这些算法进行全面总结.为此,对近十年提出的地图匹配算法进行调研,归纳出地图匹配算法的统一框架及常用时空特征.从模型或实现技术角度分类发现:现有算法大都采用HMM(Hidden Markov Model)模型,其次是最大权重模型;深度学习技术近期开始用于地图匹配,将是未来高精度地图匹配研究的趋势.
水下机器人的自主快速精确定位是完成海洋资源勘探、目标探测定位与追踪等水下作业任务的前提.论文研究基于相对测量的水下机器人主动定位方法,解决存在大的初始定位偏差情况下多水下机器人的快速定位问题.论文提出包括测量、估计和控制三个模块的多水下机器人快速主动定位框架,降低相对测量误差、初始偏差带来的定位不确定性,同时使多机器人定位具有良好的可扩展性.提出的主动接近信标策略优势在于:被定位机器人与信标的相对几何位置收敛过程中,机器人的定位估计快速指数收敛.利用受噪声干扰的相对测距信息,论文采用强化学习方法实现提出的主动接近信标机动策略.开展的数值仿真实验结果表明:相对于基于圆形轨迹、梳状形轨迹机动策略的定位方法,论文所提方法使得水下机器人定位过程具有更好的快速性和鲁棒性.